Remodeling yeast gene transcription by activating the Ty1 long terminal repeat retrotransposon under severe adenine deficiency.
نویسندگان
چکیده
The Ty1 long terminal repeat (LTR) retrotransposon of Saccharomyces cerevisiae is a powerful model to understand the activation of transposable elements by stress and their impact on genome expression. We previously discovered that Ty1 transcription is activated under conditions of severe adenine starvation. The mechanism of activation is independent of the Bas1 transcriptional activator of the de novo AMP biosynthesis pathway and probably involves chromatin remodeling at the Ty1 promoter. Here, we show that the 5' LTR has a weak transcriptional activity and is sufficient for the activation by severe adenine starvation. Furthermore, we demonstrate that Ty1 insertions that bring Ty1 promoter sequences into the vicinity of a reporter gene confer adenine starvation regulation on it. We provide evidence that similar coactivation of genes adjacent to Ty1 sequences occurs naturally in the yeast genome, indicating that Ty1 insertions can mediate transcriptional control of yeast gene expression under conditions of severe adenine starvation. Finally, the transcription pattern of genes adjacent to Ty1 insertions suggests that severe adenine starvation facilitates the initiation of transcription at alternative sites, partly located in the 5' LTR. We propose that Ty1-driven transcription of coding and noncoding sequences could regulate yeast gene expression in response to stress.
منابع مشابه
Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress
Transposable elements play a fundamental role in genome evolution. It is proposed that their mobility, activated under stress, induces mutations that could confer advantages to the host organism. Transcription of the Ty1 LTR-retrotransposon of Saccharomyces cerevisiae is activated in response to a severe deficiency in adenylic nucleotides. Here, we show that Ty2 and Ty3 are also stimulated unde...
متن کاملInhibition of a Yeast LTR Retrotransposon by Human APOBEC3 Cytidine Deaminases
The mammalian APOBEC3 family of cytidine deaminases includes several members that possess potent antiretroviral activity. Human APOBEC3F and APOBEC3G are specifically incorporated into human immunodeficiency virus type 1 (HIV-1) progeny virions in the absence of virion infectivity factor (Vif), where they deaminate deoxycytidine to deoxyuridine on the minus strand of nascent reverse transcripts...
متن کاملInfluence of RNA structural elements on Ty1 retrotransposition
The long-terminal repeat (LTR)-retrotransposon Ty1 is a mobile genetic element that replicates through an RNA intermediate. Retroelement genomic transcripts contain internal structures fundamental to gene expression and propagation. In addition, long non-coding antisense RNAs overlap the 5'-terminal region of the genomic RNA and confer post-translational copy number control. Although LTR- retro...
متن کاملSevere adenine starvation activates Ty1 transcription and retrotransposition in Saccharomyces cerevisiae.
Ty1 retrotransposons of the yeast Saccharomyces cerevisiae are activated by different kinds of stress. Here we show that Ty1 transcription is stimulated under severe adenine starvation conditions. The Bas1 transcriptional activator, responsible for the induction of genes of the de novo AMP biosynthesis pathway (ADE) in the absence of adenine, is not involved in this response. Activation occurs ...
متن کاملExploring Ty1 retrotransposon RNA structure within virus-like particles
Ty1, a long terminal repeat retrotransposon of Saccharomyces, is structurally and functionally related to retroviruses. However, a differentiating aspect between these retroelements is the diversity of the replication strategies used by long terminal repeat retrotransposons. To understand the structural organization of cis-acting elements present on Ty1 genomic RNA from the GAG region that cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 28 17 شماره
صفحات -
تاریخ انتشار 2008